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1. Introduction

QCD observables that are characterised by two large scales Q0 À ΛQCD and Q À Q0

are sensitive to multiple gluon radiation and possess double logarithmic (DL) quark and

gluon form factors depending on the ratio of the scales, αs ln2(Q/Q0). Here Q is the

overall hardness scale of the process which is determined by the underlying parton-parton

interaction, and the smaller scale Q0 is introduced by measuring an observable V in specific

kinematics.
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Hard interaction induces associated emission of relatively soft and/or quasi-collinear

gluons. We discuss observables V that measure various characteristics of the secondary

parton ensemble in inclusive manner. Examples are thrust (V = 1−T ) and broadening

(V = B) event observables in e+e− annihilation and DIS, accumulated out-of-event-plane

momentum in three-jet e+e− events as well as in hard hadron collisions producing jets.

Such observables vanish at the Born level (pure underlying parton event), V =0, and

may reach V = O (1) in the presence of secondaries that are energetic and non-collinear

to primary parton directions and look as additional jets. On average, 〈V 〉 = O (αs).

Restricting the observable even further, V ¿ 〈V 〉, introduces the second scale Q0 set-

ting the maximal allowed transverse momentum of real secondary partons. At the same

time, transverse momenta of virtual gluons are not bounded. Break-up of the real–virtual

cancellation gives rise then to the DL form factor suppression of near-to-Born parton con-

figurations.

DL enhanced corrections originate from emission of soft collinear gluons. They have

simple transparent physical origin, which helps to analyse and resum them in all orders

into exponential Sudakov form factors attached to each of primary hard partons.

Subleading single logarithmic (SL) contributions originate from various sources. First

of all, the DL effects must be treated with care in order to precisely define the arguments

of the DL functions. Moreover, in certain cases SL corrections emerge due to “recoil”

that secondary radiation produces upon the primary partons, which affects determination

of the thrust axis or of the event plane. These SL effects are due to precision treatment

of kinematics (definition of the observable, global momentum conservation, etc.) and are

basically of DL nature. Moreover, there are direct SL contributions that are suppressed at

the matrix element level and originate either from collinear hard parton splittings (z∼1) or

from radiation of soft gluons at large angles. The former is an intrinsic part of jet evolution

and is easy to account for. The latter — inter-jet radiation — poses, in principle, more

problems.

In particular, n-parton ensembles consisting of energy ordered gluons radiated at large

angles contribute, for example, to particle energy flow Q0 = E in a given inter-jet direction

at the SL level as O (αn
s lnn(Q/Q0)) as was found in [1]. Such “hedgehog” multi-gluon

configurations are difficult to analyse. The all-order results for such (so called “non-global”)

observables were obtained only in the large-N limit [1, 2].

Global observables that acquire contributions from the full available phase space (rather

than from a restricted phase space “window” as the non-global ones do) are free from

this trouble: only the hardest among the gluons contributes while the softer ones don’t

affect essentially the observable and their contributions cancel against corresponding virtual

terms. As a result, contribution of large angle soft gluon radiation reduces to virtual

corrections due to multiple gluons with kt > Q0 attached to primary hard partons. They

can be treated iteratively and fully exponentiated, together with DL terms.

Distributions in various global observables have been resummed in all orders, with SL

accuracy, in the case of underlying QCD processes involving two or three partons that one

finds in e+e−, DIS and in hadron-hadron collisions with a hard electro-weak object in the

final state (large-pT photon, Drell-Yan pair, Z0 boson, etc.).
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Carrying out this extensive programme was simplified by the fact that soft gluon

radiation in two- and three-patron systems is essentially colour-trivial. Indeed, let Ti be

the colour generator that enters the amplitude of soft gluon radiation off a hard parton i.

Then, due to the colour current conservation (T1 + T2 = 0 for two and T1 + T2 + T3 = 0

for three participating hard partons), the products TiTj that enter the soft gluon radiation

probability off the underlying primary partons are proportional to the identity in the colour

space. As a result, the answer could be expressed as the product of Sudakov form factors

corresponding to each of the primary partons. Each form factor Fi(Qi, Q0) is collinear

singular and given by exponent of the probability of single gluon emission proportional to

the “colour charge” of the hard parton i. Importantly, this answer takes full care of both

DL and SL effects provided one introduces into the form factors properly defined hardness

scales Qi that depend on the event geometry.

The case of four participating partons is the first one when colour triviality no longer

holds [3]. Here two colliding partons can be found in various colour states. Radiation

of a gluon changes the colour state of the parton pair and this affects radiation of the

next (softer) gluon. Successive large angle gluon emissions become interdependent. As a

result the product of independent Sudakov form factors misses essential SL corrections.

The programme of resumming soft SL effects due to large angle gluon emission in hadron-

hadron collisons was addressed in a series of papers [3 – 6]. It gives an additional form

factor which is not diagonal in colour indices.

This does not constitute a serious technical problem for parton collisions involving

quarks (quark scattering and annihilation into gluons, QCD Compton) since a qq̄ pair

can be only in two colour states, 8 and 1, translating into 6 and 3̄ for a qq system.

Gluon-gluon scattering is more involved: here one finds as many as five irreducible colour

representations: 8a, 10 + 10, 1, 8s, 27 (six in the general SU(N) case). The problem of

diagonalisation of the system of mixing colour channels in gg scattering was formulated by

George Sterman and collaborators in [4].

In what follows we present a transparent physical interpretation of large angle radiation

effects which can be expressed in terms of the “fifth form factor” that depends on charge

exchange in the cross (t- and u-) channels of the scattering process. We have summarized

part of the results in [7]. With account of logarithmically enhanced, DL and SL, virtual

corrections the matrix element M0 becomes

M0 →
4

∏

i=1

Fi(Qi, Q0) · FX(τ0) · M0 ≡
4

∏

i=1

Fi(Qi, Q0) · M(τ0) . (1.1)

The fifth form factor FX (where “X” stands for “cross-channel”) is collinear finite and

therefore a SL function depending on the logarithmic variable

τ0 =

∫ Q

Q0

dkt

kt

αs(kt)

π
. (1.2)

It also depends on kinematical variables s, t, u of the hard process.
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The fifth form factor exists in the QED context as well, but the specificity of QCD

scattering is that here it has essentially non-abelian structure since its exponent contains

non-commuting t- and u-channel (squared) colour charges. It reduces, however, to the

Abelian construction in special case of small angle scattering, |t| ¿ s or |u| ¿ s, where it

describes reggeization of corresponding cross channel exchange states (in particular, gluon

and quark reggeization).

We also remark upon the existence of a strange symmetry between the external (scat-

tering angle) and internal variables (rank of the gauge group). Elucidating the nature

of this unexpected symmetry calls for an effort on the part of the “theoretical-theory”

community.

It is clear that the programme of resumming soft SL effects due to large angle gluon

emission requires special care to be taken of collinear enhanced DL contributions that

have to be treated with subleading SL accuracy. This involves precise definition of the

arguments Qi of the DL form factors and of the parton densities, an accurate account

of running coupling effects, employing Mellin/Fourier transformation to carefully factorise

multiple emissions, etc. Carrying out this programme results in the expression for the

(integrated) distribution Σ(Q0, Q) that has the following general form:

Σ(Q0, Q) = Σcoll(Q0, Q) · SX(τ0) . (1.3)

Here the “collinear factor” Σcoll originates from the four Sudakov form factors in (1.1) and

embodies the parton densities, while the SL soft factor SX is due to the cross-channel “fifth

form factor” FX ,

SX(τ0) =
Tr(M †(τ0) M(τ0))

Tr(M †
0 M0)

, M(τ0) = FX(τ0) · M0 . (1.4)

The paper is organised as follows. In the next section 2 we give the general treatment of soft

gluon radiation accompanying hard scattering of arbitrary colour objects. We elucidate the

origin of the soft SL factor (“fifth form factor”) as due to large angle radiation which is gov-

erned by colour being exchanged in crossing channels. We describe the general procedure

for calculating the corresponding soft anomalous dimension in terms of Casimir operators

of t- and u-channel colour states. We also demonstrate cancellation of the divergent piece

of non-abelian Coulomb phase.

Section 3 is devoted to gluon-gluon scattering. Here we give an ergonomic solution for

eigenvalues and eigenvectors of the anomalous dimension matrix and present the answer

for the soft factor in various special cases.

The main ingredients of the paper are collected in Conclusions where in particular we

draw reader’s attention to unexpected symmetry of the problem.

2. Soft gluons and the fifth form factor

Consider a hard process involving Np primary partons. Let T b
i be the colour generator that

enters the amplitude of emission of a soft gluon with momentum kµ = (ω,k) off a hard
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parton i. The emission is described by the current

jµ,b(k) =

Np
∑

i=1

ω pµ
i

(kpi)
T b

i ;

Np
∑

i=1

T b
i = 0 . (2.1)

The latter equation represents conservation of the colour charge which guarantees current

conservation, kµjµ = 0. Squaring the current to compute the distribution we obtain

−j2(k) = −2
∑

i>j

T b
i T b

j · wij(k) , (2.2)

where wij is the “dipole antenna” distribution depending on parton angles,

wij =
ω2 (pipj)

(kpi)(kpj)
=

ξij

ξiξj
, ξij = 1 − cos Θpi,pj

, ξi = 1 − cos Θpi,k . (2.3)

2.1 Colour triviality of the Np = 2, 3 cases and Sudakov form factors

For Np = 2, 3 the products of colour generators that enter (2.2) are proportional to the

identity in the colour space. Indeed, in the case of two quark jets in e+e− there is one

dipole only and the corresponding colour factor is simply

−2T b
1T b

2 = T 2
1 + T 2

2 = 2CF .

For Np =3 (three jet qq̄g events) all colour factors can also be expressed as combinations

of the Casimir operators T 2
i since by virtue of the charge conservation in (2.1)

−2T1T2 = T 2
1 + T 2

2 − T 2
3 (and cyclic),

and one can write

−j2(k) = T 2
1 · W (1)

23 (k) + T 2
2 · W (2)

13 (k) + T 2
3 · W (3)

12 (k) , (2.4)

where we have introduced the dipole combinations

W
(1)
23 = w12 + w13 − w23 . (2.5)

The essential property of the distribution (2.5) is that it is collinear singular only when

k ‖ p1. This singularity contributes proportional to the corresponding Casimir operator,

in accord with general factorisation property. Integrating (2.5) over angles gives

∫

dΩ

4π
W

(1)
23 = ln

(p1p2)(p1p3)

(p2p3)m2
= ln

p2
t1,23

2m2
, (2.6)

with pt1,23 transverse momentum of parton p1 in the cms of the (p2, p3) pair, and m2 the

collinear cutoff. Exponentiating the soft gluon current squared (2.4) leads to the product

of three Sudakov form factors. The collinear cutoff m disappears when the virtual and

real contributions (to a collinear and infrared safe observable) are taken together, and gets

replaced by the proper observable dependent scale O (Q0), see examples in [8].

– 5 –



J
H
E
P
0
1
(
2
0
0
6
)
0
0
7

For the system of q(1), q̄(2) and a hard gluon g(3) we have T 2
1 = T 2

2 = CF , T 2
3 = CA.

Applying (2.6) to the full emission probability (2.4),

−
∫

dΩ

4π
j2(k) = 2CF ln

sqq̄

2m2
+ N ln

p2
t3

2m2
, (2.7)

we see that the answer for the qq̄g system can be represented as the product of the two quark

form factors at the scale sqq̄ = 2(p1p2) (cms energy of the qq̄ pair) and the gluon form factor

taken at the scale p2
t3 = 2(p3p1)(p3p2)/(p1p2) (invariant gluon transverse momentum) [9].

2.2 Large angle gluon radiation and the fifth form factor

Now we turn to processes involving four hard partons and consider 1+2 → 3+4 scattering

characterised by kinematical variables

s = 2p1p2 , −t = 2p1p3 , −u = 2p1p4 .

In what follows we will treat all three Mandelstam invariants as being of the same order of

magnitude and discuss small angle scattering separately.

Soft gluon radiation off the four-parton ensemble is given by (2.1) for Np = 4, with

T b
i quark, antiquark or gluon generator depending on the nature of participating parton i.

We remark that within the convention (2.1) the generators are taken as if all partons were

incoming (e.g., the actual colour charges of the outgoing partons 3 and 4 equal −T b
3 and

−T b
4 ).

It is straightforward to verify that the sum of dipoles in (2.2) can be identically repre-

sented as

− j2(k) = T 2
1 W

(1)
34 (k) + T 2

2 W
(2)
34 (k) + T 2

3 W
(3)
12 (k) + T 2

4 W
(4)
12 (k) +

+ T 2
t · At(k) + T 2

u · Au(k) . (2.8)

The first four terms form the product of the form factors attached to participating hard

partons as before. Their angular integrals, see (2.6), are the same and give

ln
Q2

2m2
, with Q2 =

tu

s
= s sin2 Θs , (2.9)

which combination of invariants becomes the hard scale of the process common for all four

Sudakov factors.

The last two terms in (2.8) give rise to the fifth form factor as discussed in the Intro-

duction. The two operators T 2
t and T 2

u are the squared colour charges exchanged in the t

and u channels of the scattering process,

T 2
t = (T3 + T1)

2 = (T2 + T4)
2 , T 2

u = (T4 + T1)
2 = (T2 + T3)

2 . (2.10)

They do not commute and this is where the call for the colour diagonalisation programme

comes from. The new angular dipole combinations that accompany these operators are

given by

At = w12 + w34 − w13 − w24 , Au = w12 + w34 − w14 − w23 , (2.11)

– 6 –
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and, unlike the dipoles W
(i)
jk , are integrable in angles:

∫

dΩ

4π
At(k) = 2 ln

s

−t
;

∫

dΩ

4π
Au(k) = 2 ln

s

−u
. (2.12)

Contrary to the first four DL contributions (that give rise to Sudakov form factors), the

additional contribution originates from coherent gluon radiation at angles larger than the

cms scattering angle Θs. Indeed, in the cms of colliding partons (ξ1 + ξ2 = ξ12 = ξ34 =

ξ3 + ξ4 = 2) we have

At =
1

ξ1

[

1 − ξ13 − ξ1

ξ3

]

+
1

ξ2

[

1 − ξ24 − ξ2

ξ4

]

. (2.13)

Upon integration over the azimuth angle φ of the radiated gluon around the direction z of

colliding parton momenta p1 = −p2,

∫

dφ

2π
At(k) =

1

ξ1
ϑ(ξ1 − ξ13) +

1

ξ2
ϑ(ξ2 − ξ24) . (2.14)

Thus, the gluon emission angle is limited from below by the t-channel scattering angle,

ξ1 > ξ13 = ξ24. Analogously, in the T 2
u term the lower limit is given by the u-channel

scattering angle, ξ1 > ξ14. Polar angle integration then gives the logarithms of the ratio of

Mandelstam invariants as stated in (2.12).

The rôle of coherent large angle gluon radiation driven by t-channel colour exchange

was elucidated in [10] where comparison was made of the distributions of hadrons accom-

panying production of Higgs bosons via gluon–gluon and W+W− fusion.

2.3 Analysis of virtual corrections

Each parton channel has various colour channels:

a1 + a2 → a3 + a4 . (2.15)

The hard scattering matrix element for a given channel is a function of four colour indices

{ai} of participating partons: a = 1, . . . N for quark and a = 1, . . . N2−1 for gluon:

(M0)
a1a3

a2a4
; σ0 ∝

∑

ai

(M †
0 )a3a1

a4a2
(M0)

a1a3

a2a4
= Tr

(

M †
0 · M0

)

. (2.16)

To address the problem of all-order analysis of soft radiation with single logarithmic ac-

curacy, it suffices to study virtual corrections to hard patron matrix element M due to

multiple soft gluons. Then, real production cross sections can be obtained simply by “cut-

ting” the product M † ·M . Let kV be the contribution to the observable V of the soft (real)

gluon k. In the integration region 0 < kV ¿ Q0 positive contribution to the cross section

due to real production of gluons whose effect upon the observable is negligibly small cancels

against negative virtual correction. After this standard real–virtual cancellation, the re-

sulting distribution is determined by the virtual factor originating from the complementary

integration region Q0 < kV < Q.

– 7 –
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The soft cross channel form factor FX(τ0, {pi}), the fifth form factor in (1.1), is ex-

pressed in terms of the matrix M(τ0) that is obtained by considering virtual corrections to

M0 due to soft gluons with kt > Q0:

M0 =⇒ M(τ0) = FX(τ0) · M0 , FX(0) = 1 . (2.17)

For Q0 ∼ Q we have τ0 ¿ 1 and the matrix M(τ0) reduces to M0. The cross section then

acquires the “soft factor” SX(τ0) given in (1.4) and we may write

F †
X(τ0) · FX(τ0) =⇒ SX(τ0) , (2.18)

where FX is a matrix in the colour space that will be dealt with in what follows.

The τ dependence of M(τ) can be extracted using the differential equation [3] that

arises from the following iterative procedure. By virtue of soft gluon factorisation, the

softest gluon k is emitted from the four external primary parton lines. Differentiating over

its transverse momentum we obtain

∂τ M(τ) = G(τ) · M(τ) , τ =

∫ Q

kt

dk′
t

k′
t

αs(k
′
t)

π
, (2.19)

where G(τ) multiplies the matrix element M(τ) dressed by gluons that are harder than

kt. The soft anomalous dimension G is a colour matrix and is a function of s, t and u. It

is not symmetric and is complex due to the s-channel gluon exchanges (Coulomb phases,

[11], see also [3 – 6]).

Soft virtual corrections to the hard scattering matrix element can be split into two

pieces: eikonal and Coulomb contributions.

Eikonal contribution. The first virtual contribution equals minus one half of the

eikonal current squared (2.8) that we considered above in the context of real soft gluon

radiation, and cancels it in the part of the phase space that is open for real gluons:

kV ∼ kt ∼ ω < Q0. The colour trivial collinear logarithmic pieces in (2.8) are extracted

and included into the exponents of four Sudakov form factors Fi at the hard scale Q given

in (2.9). The remaining soft SL cross channel contributions, upon integration over gluon

angles, give the soft anomalous dimension responsible for virtual suppression coming from

the region Q0 < kt < Q as stated in (1.2):

Geik = Greal + Geik
virt = −

(

T 2
t · ln s

−t
+ T 2

u · ln s

−u

)

, Q0 < kt < Q . (2.20)

Let us stress that this matrix is a constant in τ , the τ -dependence entering through the

boundary in kt.

Coulomb gluons. An additional virtual contribution arises when a soft virtual gluon

connects two incoming or two outgoing partons. While in the eikonal contributions (both

real and virtual) it was the gluon line that was put on-shell, the Coulomb correction is

obtained by putting on-shell the two hard parton lines in the intermediate state. This

contribution can be extracted by considering in (2.2) only the (p1, p2) and (p3, p4) interac-

tions and replacing w12 and w34 by iπ. The imaginary contributions present in the diagonal

– 8 –



J
H
E
P
0
1
(
2
0
0
6
)
0
0
7

(Sudakov) pieces in (2.8) give rise to Abelian Coulomb phase which fully cancels upon mul-

tiplication of the amplitude by the conjugate one. Imaginary part of the soft anomalous

dimension reads

GC = iπ
(

T 2
t + T 2

u

)

, 0 < kt < Q ; (2.21)

it provides the amplitude with a non-Abelian Coulomb phase factor.

Combining real emission, virtual eikonal and Coulomb corrections, the final result for

the soft anomalous dimension G becomes

G(τ) = Γ · ϑ(τ0 − τ), Γ ≡ Geik + GC = −(T 2
t T + T 2

u U) ; (2.22)

T = ln
s

−t
− iπ , U = ln

s

−u
− iπ , (2.23)

for Q0 < kt < Q, and

G(τ) = ΓC · ϑ(τ − τ0), ΓC ≡ GC = iπ
(

T 2
t + T 2

u

)

, (2.24)

for 0 < kt < Q0.

Exponentiation. The evolution equation (2.19) has to be integrated over τ from 0 (kt =

Q) up to Λ → ∞ (kt =0). The formal solution is given by a τ -ordered exponent

M(τ0) = Pτ exp

{∫ Λ

0
dτ G(τ)

}

· M0 . (2.25)

Since G(τ) assumes (different) constant values for 0 < τ < τ0 and τ0 < τ < ∞, using

(2.22)–(2.24) we obtain

M(τ0) = e(Λ−τ0)ΓC eτ0 Γ · M0 . (2.26)

Cancellation of divergent Coulomb phase. For Λ → ∞ (kt → 0) the first factor in

(2.26) diverges. However, since exchanging a gluon between two incoming (or outgoing)

partons obviously does not affect their overall colour state, the sum of the two matrices

T 2
t + T 2

u is necessarily diagonal in s-channel colour,

T 2
t + T 2

u = −T 2
s +

4
∑

i=1

T 2
i , Ts = T1 + T2 = −(T3 + T4) . (2.27)

Therefore the Coulomb matrix ΓC in (2.24) is anti-Hermitian. Thus the first factor in (2.26)

becomes a unitary matrix and cancels upon multiplication with the conjugate amplitude

in (1.4). Therefore, in the calculation of physical distributions one can effectively neglect

the divergent Coulomb phase factor in (2.26) and use

M(τ0) = eτ0 Γ · M(0) , Γ = −
(

T 2
t · T + T 2

u · U
)

. (2.28)

Let us stress that cancellation of the non-Abelian Coulomb phase is only partial. An

imaginary Coulomb contribution coming from the virtual gluon momentum region Q0 <

kt < Q is still present and enters Γ through complex logarithms T and U defined in (2.23).

– 9 –
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2.4 Colour structure

To evaluate the matrices T 2
t and T 2

u in (2.28) we turn to the analysis of the colour structure

of the process in various channels.

The operator T 2
t is a number in a given colour state of the t-channel parton pair,

(p1, p3) and/or (p2, p4). Therefore, in the t-channel projector basis it is the diagonal matrix

of Casimirs. Similarly, T 2
u is diagonal in the u-channel projector basis (p1, p4) or (p2, p3).

For calculation of the s-channel observables it is natural, however, to describe colour

states from the s-channel point of view. We will use the s-channel basis of projectors Pα

onto irreducible SU(N) representations that are present in the colour space of two incoming

partons (p1, p2) or, equivalently, outgoing (p3, p4). The completeness relation reads

(

1l
)a1a3

a2a4

= δa1,a3δa2,a4
, 1l =

N
∑

α=1

Pα , Tr(Pα) = Kα . (2.29)

Here Kα is the dimension of the representation α, and N the number of irreducible repre-

sentations involved. The sum over all Kα equals the total number of colours states of the

system of two incoming (or outgoing) partons. The matrix element can be expressed as a

sum over colour projectors

M0 =

N
∑

α=1

m0α Pα , M(τ) =

N
∑

α=1

mα(τ)Pα . (2.30)

In order to compute T 2
t,u we need to know the transition matrices connecting s- and t-/u-

channels projectors. Introducing

P(t) = Kts · P , P = Kst · P(t) ; Kst = (Kts)
−1 ; (2.31a)

P(u) = Kus · P, P = Ksu · P(u); Ksu = (Kus)
−1 , (2.31b)

we have
(

T 2
t

)

αβ
=

∑

ρ

(Kst)αρ c(t)
ρ (Kts)ρβ , (2.32)

where the indices α and β mark irreducible representations of the colour group of the pair of

incoming partons (s-channel) and ρ — representations of the t-channel pair. In particular,

c
(t)
ρ stand for the Casimir operator of the t-channel representation ρ.

In general, K are not necessarily square matrices. For example, for the process qq̄ → gg

we have two colour states in the s-channel, 1 and 8, while there are three in the t-channel:

3, 6̄ and 15.

We conclude this section devoted to general discussion of the physics and technical

ingredients of the analysis of the fifth form factor by presenting the final general expression

which holds for scattering of arbitrary colour objects:

FX(τ0) = exp
{

−τ0

(

T 2
t · T + T 2

u · U
)}

, (2.33)

where the cross-channel squared colour charge matrices T 2
t and T 2

u have to be computed

using (2.32). We will demonstrate this computation on the concrete case of gluon–gluon

scattering.
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3. Gluon-gluon scattering

The gg → gg amplitude has (N2−1)4 colour indices. We start by introducing the s-channel

projector basis for this process.

3.1 Irreducible representations and projectors

The colour state of two gluons can be characterised in terms of irreducible representations.

In SU(3) we have

glue ⊗ glue = 8a + 10 + 1 + 8s + 27 , (3.1)

where 8a and 10 mark antisymmetric representations (octet and the sum of the decuplet

and anti-decuplet) and three symmetric ones are the singlet (1), octet (8s) and the high

symmetric tensor representation (27) with corresponding dimension. In the general case

of SU(N) (with N > 3) we have an additional symmetric representation (which we mark

0):

glue ⊗ glue = 8a + 10 + 1 + 8s + 27 + 0 . (3.2)

Thus we will keep using the SU(3) motivated names in spite of the fact that the dimensions

of corresponding representations are actually different from 8, 2 × 10, etc.:

K1 = 1 , Ka = Ks = N2 − 1 , K10 = 2 × (N2 − 1)(N2 − 4)

4
,

K27 =
N2(N − 1)(N + 3)

4
, K0 =

N2(N + 1)(N − 3)

4
. (3.3)

(Mark that for N = 3 we have indeed K0 = 0.) It is straightforward to check that the sum

of the dimensions (3.3) gives (N2 − 1)2 as expected.

As was explained above, it is convenient to work in the colour space of hard gluon

scattering in the s-channel. We construct the basis of s-channel projectors Pα ordered as

follows:

α = {8a,10,1,8s,27,0} . (3.4)

The projectors are explicitly constructed in appendix A. They satisfy the completeness

relation
6

∑

α=1

Pα = Pa + P10 + P1 + Ps + P27 + P0 = 1l ;
(

1l
)a1a3

a2a4

= δa1,a3δa2,a4
. (3.5)

Dimension of a given representation (3.3) can be calculated by taking trace of the corre-

sponding projector:

Tr (Pα) ≡
∑

a1,a2

(Pα)a1 a1

a2 a2
= Kα . (3.6)

Casimir operators of all six representations are calculated in appendix A.2. In our basis

(3.4) the diagonal matrix of Casimir operators reads

(T a)2αβ = (C2)αβ = δαβ · cα , cα = {N, 2N, 0, N, 2(N+1), 2(N−1)}. (3.7)

This matrix enters the expression (2.32) for the anomalous dimension Γ. Matrices Kts

and Kus that rotate the s-channel projector basis into t- and u-channels are calculated in

appendix A.3.
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3.2 Diagonalisation of the anomalous dimension matrix

We shall represent the anomalous dimension matrix as

Γ = −N(T + U) · Q , (3.8)

where the matrix Q depends on the ratio of the logarithmic variables

b ≡ T − U

T + U
, (3.9)

Q =





























3
2 0 −2b −1

2b − 2
N2 b − 2

N2 b

0 1 0 −b − (N+1)(N−2)
N2 b − (N−1)(N+2)

N2 b

− 2
N2−1

b 0 2 0 0 0

−1
2b − 2

N2−4b 0 3
2 0 0

− N+3
2(N+1)b − N+3

2(N+2)b 0 0 N−1
N 0

− N−3
2(N−1)b − N−3

2(N−2)b 0 0 0 N+1
N





























(3.10)

It is worth observing that the matrix elements of the states 27 and 0 (two last rows and

columns) are formally related by the operation N → −N .

3.2.1 Eigenvalues and eigenvectors

Six eigenstates of Q naturally split into two groups of three.

The first three. The first three eigenvalues are N -independent:

E1 = 1 , E2 =
3 − b

2
, E3 =

3 + b

2
. (3.11)

The eigenvectors V1,V2,V3 corresponding to these eigenvalues are

V1,2,3 =









































0

1

0

4b

N2−4

−bN(N+3)

2(N+2)

bN(N−3)

2(N−2)



















































































1+b

−2b

4b

N2−1

1 +
b (N2−12)

N2−4

− bN(N+3)

(N+1)(N+2)

− bN(N−3)

(N−1)(N−2)





















































































−1+b

−2b

− 4b

N2−1

1 − b (N2−12)

N2−4

bN(N+3)

(N+1)(N+2)

bN(N−3)

(N−1)(N−2)











































. (3.12)

The states 2 and 3 are related by the crossing transformation t ↔ u. In particular, the

eigenvector V3 is obtained from V2 by b → −b and changing the sign of the antisymmetric

projector components (first two rows).

We also remark that N enters the P27 and P0 components with the opposite sign thus

reflecting the symmetry of the matrix elements of Q.
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The last three. The last three eigenvalues solve the cubic equation

[

Ei −
4

3

]3

− (1 + 3b2)(1 + 3x2)

3

[

Ei −
4

3

]

− 2(1 − 9b2)(1 − 9x2)

27
= 0 , (3.13)

where we have introduced the notation

x =
1

N
. (3.14)

Solutions can be parametrised as follows:

E4,5,6 =
4

3

(

1 +

√

(1 + 3b2)(1 + 3x2)

2
cos

[

φ + 2kπ

3

]

)

; k = 0, 1, 2 , (3.15a)

where φ is given by

cos φ = R , R =
(1 − 9b2)(1 − 9x2)

[(1 + 3b2)(1 + 3x2)]
3

2

. (3.15b)

The last three eigenvectors are

V4,5,6 =













































− 4

N2
(Ei−1) b

−N2−4

N2
(Ei−2) b

1

N2 − 1

[(

Ei −
N−1

N

)(

Ei −
N+1

N

)

− N2−5

N2
b2

]

4

N2
b2

N

N + 1

[

N+2

2N
(Ei−2)

(

Ei −
N+1

N

)

− 2 b2

]

N

N − 1

[

N−2

2N
(Ei−2)

(

Ei −
N−1

N

)

− 2 b2

]













































, (3.16)

with Ei the corresponding energy eigenvalue, i = 4, 5, 6.

Vectors Vi are orthogonal with respect to the scalar product defined by the metric

tensor Wαβ = Kαδαβ ,

〈Vi|W−1 |Vk〉 = 0 , i 6= k .

3.2.2 Strange symmetry

We note an unexpected mysterious property of the equation (3.13) for the eigenvalues of

the soft anomalous dimension matrix which is symmetric with respect to

b =
T − U

T + U
⇐⇒ x =

1

N
, (3.17)

the transformation that interchanges parameters characterising external (scattering angle)

and internal (colour group) degrees of freedom.
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3.3 Hard matrix element

The colour structure of the hard gluon scattering matrix element can be represented in

terms of the s-, t- and u-channel projectors (see appendix A)

Pa =
1

N
, P(t)

a =
1

N
, P(u)

a =
1

N
. (3.18)

We have

M0 = N
(

ms Pa + mt P(t)
a + mu P(u)

a

)

, (3.19)

where we have included into mλ (λ = s, t, u) the one-gluon exchange diagram in the λ-

channel together with the piece of the four-gluon vertex contribution that has the same

colour structure. The t- and u-channel projectors P
(t)
a and P

(u)
a can be expressed in terms

of the s-channel ones introduced in (3.5) (see appendix A.3) as follows:

P(t)
a =

1

2
Pa + P1 +

1

2
Ps −

1

N
P27 +

1

N
P0 ,

P(u)
a = −1

2
Pa + P1 +

1

2
Ps −

1

N
P27 +

1

N
P0 . (3.20)

We obtain

M0 = N

[

Ma

2
Pa + Ms

(

P1+
1

2
Ps−

1

N
P27+

1

N
P0

)]

, (3.21)

where Ma and Ms are, respectively, the parts of the matrix element antisymmetric and

symmetric with respect to exchange of gluons in the s-channel:

Ma = 2ms + mt − mu , Ms = mt + mu . (3.22)

It is worthwhile to notice that these amplitudes are separately gauge invariant. Squaring

the matrix element (3.21) gives

|M0|2 = N2

[

M2
a

4
· Pa + M2

s ·
{

P1 +
1

4
Ps +

1

N2
P27 +

1

N2
P0

}]

. (3.23)

Here

M2
a ≡ (2ms+mt−mu)2 = 9 − st

u2
− us

t2
− 4tu

s2
− 3s2

tu
, (3.24)

M2
s ≡ (mt + mu)2 = 1 − st

u2
− us

t2
+

s2

tu
, (3.25)

where we have used the known Lorentz matrix elements.

The total scattering cross section is proportional to the colour trace of the squared

matrix element (3.23):

σ0 ≡ Tr
(

M2
0

)

= N2(N2−1)
M2

a + 3M2
s

4
= N2(N2−1)

{

3 − tu

s2
− us

t2
− st

u2

}

, (3.26)

where we have used the kinematical relation

s2

tu
+

t2

su
+

u2

st
= 3 .
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Let us mention another elegant representation for the colour summed cross section,

σ0 =
N2

2
(N2−1)

[

(mt+mu)2 + (mu−ms)
2 + (ms+mt)

2
]

. (3.27)

Here the first term in square brackets is given in (3.24) and the other two can be obtained

from it by simple crossing, that is by replacing s ↔ t and s ↔ u, respectively.

3.4 Squaring dressed matrix element

Now we are in a position to construct the dressed matrix element according to (2.28) and

evaluate the cross section. Expressing the eigenvectors (3.12), (3.16) as

Vκ = (Z · P)κ =
∑

α

Zα
κ Pα , Pα = (Z−1 · V)α =

∑

κ

(

Z−1
)κ

α
Vκ , (3.28)

for the evolution exponent we have

eΓτM0 =
∑

β

mβ(τ)Pβ , (3.29)

where we have introduced

mβ(τ) =
∑

α

m(0)α
∑

κ

(Z−1)κα · e−N(T+U)τ Eκ · Zβ
κ . (3.30)

The soft factor SX becomes

SX(τ) = σ−1
0 Tr

(

M †(τ) · M(τ)
)

= σ−1
0

∑

β

∣

∣

∣mβ(τ)
∣

∣

∣

2
· Kβ . (3.31)

3.5 Special cases

Now we turn to the discussion of special cases in which the answer is relatively simple and

can be given explicitly.

3.5.1 Scattering at 90o

Consider first the simple case of b = 0 (t = u) which corresponds to 90 degree scatter-

ing. Here Q is diagonal so that the s-channel projectors Pα become eigenvectors whose

eigenvalues are just the corresponding diagonal elements of Q:

Eκ =

{

1,
3

2
,

3

2
, 2,

N−1

N
,

N+1

N

}

, (3.32)

Vκ ∝ {P10, Ps + Pa, Ps − Pa, P1, P27, P0} . (3.33)

To present the answer for the soft factor SX it is convenient to define the suppression

factors

χt(τ) = exp

{

−2Nτ · ln s

−t

}

, χu(τ) = exp

{

−2Nτ · ln s

−u

}

. (3.34)

In 90o scattering kinematics we have ReT = ReU = ln 2 and

χt = χu = χ(τ) = exp {−2Nτ ln 2} , (3.35)
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and we get

SX(τ) =
χ2

3

[

4

N2−1
χ2 + χ +

N−3

N−1
χ

2

N +
N+3

N+1
χ− 2

N

]

. (3.36)

We check that for τ = 0, χ = 1, (3.36) gives indeed SX(0) = 1 as it should.

The cubic equation (3.15b) trivialises and can be solved explicitly for b=0:

cos φ =
1 − 9x2

(1 + 3x2)3/2
, =⇒ cos

φ

3
=

1√
1 + 3x2

,

cos

(

φ

3
± 2π

3

)

= − 1 ± 3x

2
√

1 + 3x2
. (3.37)

Substituting (3.37) into (3.15) gives the last three energy levels in (3.32).

3.5.2 N → ∞ limit

By virtue of the weird symmetry (3.17), the large-N limit (x → 0) is related with the 90o

scattering case considered above: the N -dependent energy levels 4, 5, 6 can be obtained

from (3.32) simply by replacing x → b,

cos
φ

3
=

1√
1 + 3b2

, cos

(

φ

3
± 2π

3

)

= − 1 ± 3b

2
√

1 + 3b2
. (3.38)

The energy levels are as follows:

E1 = 1 , E2 =
3 − b

2
, E3 =

3 + b

2
, E4 = 2 , E5 = 1 − b , E6 = 1 + b .

The weird symmetry does not extend upon the eigenvectors so that they have to be derived

anew:

V1,...6 =





























0

0

0

0

1

−1

























































1 + b

−2b

0

1 + b

−b

−b

























































1 − b

2b

0

−1 + b

−b

−b

























































−4(1−b2)

−8b3

(1−b2)2

4(1−b2)

2b2(1+b2)

2b2(1+b2)

























































0

2

0

0

1

1

























































0

−2

0

0

1

1





























. (3.39)

The soft factor becomes

SX ' χt χu

2 (M2
a + 3M2

s )

[

4M2
s + (Ma−Ms)

2 χt + (Ma+Ms)
2 χu

]

. (3.40)

3.5.3 Regge limit

In the case b → ±1 (small angle scattering) (3.15b) can be solved explicitly too, for arbi-

trary N :

cos φ = − 1 − 9x2

(1 + 3x2)3/2
, =⇒ cos

φ

3
=

−1√
1 + 3x2

, (3.41)

cos

(

φ

3
± 2π

3

)

=
1 ∓ 3x

2
√

1 + 3x2
. (3.42)
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Substituting (3.41) into (3.15) and invoking (3.11) produces the set of eigenvalues

{Eκ} = {1, 1, 2; 0, 2(1−x), 2(1+x)} . (3.43)

In what follows we consider the forward scattering case, b → +1.

For |t| ¿ s ' |u| we have T ' ln s
−t À |U | ' π. Neglecting the finite phase, in the

logarithmic approximation in T the soft matrix (2.33) becomes diagonal in the t-channel

basis

FX(τ) = eτΓ ' Kst e−C2·τ ln(s/t) Kts, (3.44)

where C2 is the diagonal matrix of the Casimirs (3.7) and the matrices K are given in

appendix A.3. These exponents describe reggeization of six possible t-channel colour states.

Indeed, the energy levels N ·Eκ in (3.43) equal the Casimir operators. Cast in the canonical

t-channel order (3.4), the eigenvalues read

cα = {N, 2N, 0, N, 2(N+1), 2(N−1)} = N · {E1, E3, E4, E2, E6, E5} .

The eigenvectors corresponding to the energies (3.43) become, accordingly, pure t-channel

projector states,

V1 = Kst · P(t)
a , V2 = Kst · P(t)

s , V3 = Kst · P(t)
10 ,

V4 = Kst · P(t)
1 , V5 = Kst · P(t)

0 , V6 = Kst · P(t)
27 , (3.45)

and are given, correspondingly, by the columns # 1, 4, 2, 3, 6 and 5 of the re-projection

matrix Kts (A.28). In our case of the order αs matrix element, (3.21) in the t → 0 limit

reduces to only one state namely, that of the asymmetric t-channel octet. Indeed, for

Ms = Ma ' mt we have

M0 ' N · P(t)
a , FX · M0 =

(s

t

)−Nτ
· M0 ,

giving

S(τ) = χt(τ) =
(s

t

)−2Nτ
, (3.46)

which exponent coincides with the (twice) Regge trajectory of the gluon exchanged in the

t-channel.

3.5.4 N = 3

In SU(3) the representation 0 has zero weight, K0 = 0, and the projector P0 does not

contribute. The projector basis reduces to five states: α = {a,10,1, s,27}. The reduced

anomalous dimension matrix Q is obtained from (3.10) by setting N =3 and removing the

last row and column. The first three eigenvalues E1,2,3 are N -independent and given by

(3.11). The other three E4,5,6 are easy to obtain from (3.15) where φ = π/2. Dropping the

eigenvalue E6 = 4/3 attached to the fake 0 state, we have five energy levels

Eκ =

{

1,
3 − b

2
,
3 + b

2
,
4 + 2

√
1 + 3b2

3
,
4 − 2

√
1 + 3b2

3

}

. (3.47)
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The corresponding eigenvectors V1,...5 read































0

1

0

4b

5

−9b

5





























































b+1

−2b

b

2

1− 3b

5

−9b

10





























































b−1

−2b

− b

2

1+
3b

5

9b

10









































































−
4b

(

1+2
√

1+3b2
)

27

10b
(

1−
√

1+3b2
)

27

1+
√

1+3b2

18
+

b2

9

4 b2

9

5
(

1−
√

1+3b2
)

18
+

2b2

3





















































































−
4b

(

1−2
√

1+3b2
)

27

10b
(

1+
√

1+3b2
)

27

1−
√

1+3b2

18
+

b2

9

4 b2

9

5
(

1+
√

1+3b2
)

18
+

2b2

3











































4. Conclusions

In this paper we considered the soft SL factor SX defined in (1.4) that enters the general

representation (1.3) for two scale QCD observables in hadron–hadron collisions. Being

collinear safe, this factor is driven by emission of soft gluons at large angles, see (2.14).

For global observables the problem reduces to the analysis of soft radiation off the primary

hard partons pi (i = 1, . . . 4) only, and essentially trivialises in spite of remaining non-

Abelian. Indeed, such accompanying radiation has classical nature described by eikonal

currents and Coulomb phase effects. Virtual and real eikonal contributions due to such

gluons fully cancel in the phase space region kt < Q0, while the Coulomb contributions

reduce to an (infinite) colour matrix phase that cancels in the distributions. The net result

is the virtual eikonal suppression, accompanied by finite non-Abelian Coulomb phase, due

to the complementary momentum region Q0 < kt < Q.

Our first result is the general simple expression for virtual dressing of the scattering

matrix element, in terms of colour charges (Casimir operators) of the cross-channel colour

exchanges, T 2
t and T 2

u :

1

2

∫

(dk) j2(k) =
1

2

4
∑

i=1

T 2
i · Ri + T 2

t · T + T 2
u · U

(

T = ln
s

t
, U = ln

s

u

)

. (4.1)

Here Ri are the (colour-trivial) “radiators” that accommodate collinear singularities and

participate in forming the collinear factor in (1.3). The last two terms form the soft

anomalous dimension matrix Γ that determines SX as a function of the SL variable τ (1.2).

Our anomalous dimension differs from the one introduced in [4, 5] by a piece proportional

to the unit matrix. In our approach, this piece is absorbed into collinear parton radiators.

It participates in determining the precise scales of the DL form factors in (1.3) in terms

of a combination of angular integrated soft dipoles W
(`)
ij each of which produces the same

scale Q2 = tu/s, see (2.9).
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The matrices T 2
t and T 2

u do not commute. We found it convenient to work in the

colour basis of s-channel projectors where each of them can be easily found with use of the

re-projection matrices (2.31),

T 2
t = Kst C

(t)
2 Kts , T 2

u = Ksu C
(u)
2 Kus , (4.2)

with C2 the diagonal matrix of Casimir operators of all irreducible representations present

in the t (u) channel.

Using the s-channel language makes the treatment and understanding of the results

more transparent. The graphical colour projection technique presented in the appendix

allowed us to avoid using the over-complete Chan-Paton basis and largely simplified the

analysis. In particular, the calculation of the key ingredients (4.2) of the anomalous di-

mension becomes very simple since knowing the transformation matrices K the problem

reduces to the Casimirs (for gluon-gluon scattering the Casimirs are given in (3.7)).

Another advantage of the representation for Γ in (2.28) in terms of cross-channel

charges (4.2) is trivialisation of the analysis of the Regge behaviour. In the case of small

angle scattering one term dominates, T À U (forward scattering) or U À T (back-

ward), and the anomalous dimension Γ becomes diagonal in the corresponding chan-

nel so that the problem becomes essentially Abelian. Resulting exponents are nothing

but Regge trajectories of t-(u-) channel exchanges that are proportional to corresponding

Casimirs.

As an example we considered in detail the case of gluon-gluon scattering which was

first treated by Kidonakis, Oderda and Sterman in [4]. Its colour structure is suffi-

ciently complex as the problem involves in general six colour states (which reduce to

five in SU(3)). We found a simple representation for arbitrary N for the eigenvalues

of the matrix Q, related with Γ as Γ = −N(T +U)Q, with T = ln(s/|t|) − iπ, U =

ln(s/|u|) − iπ. In our representation the three N -dependent energy levels (3.16) and cor-

responding eigenvectors (3.16) are explicitly real functions of T/U (the property not easy

to extract from [4]).

We gave explicit solutions for the soft factor SX in a number of special cases including

large-N (3.40) and Regge limits (3.46).

Finally, we observed that the cubic equation (3.13) for the N -dependent energy levels

4, 5, 6 of Q possesses a weird symmetry which interchanges internal (colour group) and

external (scattering angle) degrees of freedom:

T + U

T − U
⇐⇒ N . (4.3)

In particular, this symmetry relates 90-degree scattering, T = U , with the large-N limit

of the theory. Giving the complexity of the expressions involved, such a symmetry being

accidental looks highly improbable. Its origin remains mysterious and may point at exis-

tence of an enveloping theoretical context that correlates internal and external variables

(string theory?).
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A. Two gluon states in SU(N)

To construct colour states of the two-gluon system in the s-channel we draw a pictorial

identity

1lbb
′

aa′ ≡ δaa′ δbb′ = = 4 (A.1)

where a, b (a′, b′) are colour indices of incoming (outgoing) gluons, and analyse an inter-

mediate state consisting of two quarks and two antiquarks. Here we have used

= tr(tata
′

) =
1

2
δaa′ . (A.2)

By interchanging quark and antiquark lines we can construct four tensors with a given

symmetry with respect to quark and, separately, antiquark colour indices,

1l = Π+
+ + Π+

− + Π−
+ + Π−

− . (A.3)

We get

Πu
d =

1

4

(

+ ud

)

+ u + d

where u, d = ± label the symmetry with respect to two “internal” quarks and two anti-

quarks, respectively. Introducing the notation

1l = , X =

(

= δb
a′δb′

a

)

,

and

W+ = , W− =

(

= Tr( tb ta
′

ta tb
′

)

)

,

we write down these four combinations as

Π+
+ =

1

4
(1l + X) + W+ + W−

Π−
− =

1

4
(1l + X) − W+ − W−

Π+
− =

1

4
(1l − X) + W+ − W−

Π−
+ =

1

4
(1l − X) − W+ + W− . (A.4)

For example, Π+
+ is symmetric under interchanging quarks and antiquarks, Π+

− is quark-

symmetric and antisymmetric with respect to antiquarks, etc.

The sum of (A.4) obviously reproduces (A.3). Observing that interchanging the gluons

a ↔ b we have 1l ↔ X and W+ ↔ W−, we conclude that

Π+
+ and Π−

− are symmetric,

Π+
− and Π−

+ are antisymmetric

with respect to interchanging the gluon indices a, b (corresponding to t ↔ u).
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A.1 Projectors

The simplest projectors — those onto the singlet and (antisymmetric an symmetric) octet

states of two gluons — are obtained by connecting a quark and an antiquark line in (A.1)

and can be represented graphically as

P1 =
1

N2 − 1

(

=
1

N2 − 1
δb
a δb′

a′

)

, (A.5)

Pa =
1

N

(

=
1

N
ifabc ifcb′a′ =

1

N
T c

abT
c
b′a′

)

, (A.6)

Ps =
N

N2 − 4

(

=
N

N2 − 4
dabc da′b′c

)

, (A.7)

where the dot in (A.6) marks the standard tree-gluon vertex (group structure constant)

ifabc and the star in (A.7) stands for the symmetric dabc symbol.

Introducing the notation for s-channel “multiplication” of two graphs A and B,

(

A · B
)bb′

aa′
=

∑

c,d

Abd
ac Bdb′

ca′ ,

one obtains [12]

W± · P1 = − 1

4N
P1 , W± · Pa = 0 , W± · Ps = − 1

2N
Ps . (A.8)

These relations help us to construct remaining irreducible representations. To this end

we subtract from the tensors Πu
d (A.4) their projections onto the singlet and two octets,

(A.5)–(A.7), and derive the four higher projectors:

P27 = Π+
+ − N − 2

2N
Ps −

N − 1

2N
P1 ; (A.9)

P0 = Π−
− − N + 2

2N
Ps −

N + 1

2N
P1 ; (A.10)

P10 = Π+
− − 1

2
Pa , P10 = Π−

+ − 1

2
Pa . (A.11)

For our purposes, the irreducible decuplet and anti-decuplet representations (A.11) can

be handled as a single state, P10 = P10 + P10. Written in full, the higher representation

projectors read

P10 =
1

2
(1l − X) − Pa ; (A.12)

P27 =
1

4
(1l + X) − N − 2

2N
Ps −

N − 1

2N
P1 + (W+ + W−) ; (A.13)

P0 =
1

4
(1l + X) − N + 2

2N
Ps −

N + 1

2N
P1 − (W+ + W−) . (A.14)
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Making use of (A.8) and of the relations [12]

16W± ·W± = 1l − N2 − 1

N2
P1 − N2−4

N2
Ps − Pa , (A.15)

16W± ·W∓ = X − N2 − 1

N2
P1 − N2−4

N2
Ps + Pa , (A.16)

it is straightforward to verify that the operators (A.12)–(A.14) are indeed projectors,

Pα · Pβ = Pα δαβ . (A.17)

A.2 Casimir operators

The Casimir operators for the singlet, c1 = 0, and octet states, ca = cs = N , are known.

To obtain cR for higher representations R = 10,27,0 we construct the total colour charge

of the two-gluon state as a sum of four quark generators,

T a
R = ta1 + ta2 + t̄a1′ + t̄a2′ , (A.18)

where (1, 2) and (1′, 2′) are “internal” colour lines of quarks and antiquarks inside two

gluons, see (A.1). N2 colour states of a qq pair (1,2) split into symmetric (6) and antisym-

metric (3̄) irreducible representations,

≡ (3) ⊗ (3) = P6 + P3̄ ; (A.19a)

P6 =
1

2

(

+

)

(A.19b)

P3̄ =
1

2

(

−
)

. (A.19c)

A qq̄ pair ((1, 1′), (1, 2′), (2, 1′), (2, 2′)) can be in general in the colour singlet (1) and colour

octet (8) characterised by the projectors

≡ (3) ⊗ (3̄) = P1 + P8 ; (A.20a)

P1 =
1

N
(A.20b)

P8 = 2 (A.20c)

Remark that (A.20) is nothing but the graphic representation of the Fierz identity.

Squaring T a
R in (A.18) and exploiting the symmetry properties of the representations

(A.9)–(A.11) with respect to quarks and antiquarks we arrive at

cR ≡ (T a
R)2 = 4CF + 8v33̄(8) + 2 [ v33(Rq) + v3̄3̄(Rq̄) ] , (A.21)

where v is the one-gluon “exchange potential” between fermions, and Rq (Rq̄) marks the

irreducible SU(3) representation of the two-quark (antiquark) system.
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Since our representations are traceless, an internal quark and an antiquark are always

in the octet state,

v33̄P8 = v33̄(8)P8 = ta t̄a · P8 = −ta ta · P8 =
1

2N
P8 .

Rq may be either 6 or 3̄ depending on the quark symmetry (6̄ and 3 for Rq̄):

v33(6) = v3̄3̄(6̄) = −1 − N

2N
, v33(3̄) = v3̄3̄(3) = −1 + N

2N
. (A.22)

The values of inter-quark potentials v33(6) and v33(3̄), and v33̄(8) between a quark and an

antiquark are easy to derive by projecting the Fierz identity (A.20) in the “rotated” form,

=
1

2
− 1

2N
, (A.23)

onto the s-channel states (A.19) and (A.20c). Thus we obtain

cR = 4
N2 − 1

2N
+

4

N
+ 2

(

uN − 1

2N
+

dN − 1

2N

)

, (A.24)

giving

c27 = 2(N + 1) , (u = d = +)

c0 = 2(N − 1) , (u = d = −)

c10 = 2N . (u = −d) . (A.25)

A.3 t- and u-channel projectors in terms of s-channel ones

t-channel gluon exchange between gluons (s-channel gluon exchange potential) is propor-

tional to the t-channel antisymmetric octet projector P(t)
a and has the following decompo-

sition in s-channel colour projectors

V ≡ = NP(t)
a =

N

2
· Pa + 0 · P10 + N · P1 +

N

2
· Ps + (−1) · P27 + 1 · P0. (A.26)

The coefficients in (A.26) are related with the Casimir operators of the representations

involved, cα = (T1 + T2)
2 and T 2

1 = T 2
2 = N , as

V · Pα =
1

2
[ 2N − cα ] · Pα , (A.27)

with cα given in (3.7). The u-channel projector P(u)
a is obtained from (A.26) by transposing

the outgoing gluons which amount to changing sign of the asymmetric components Pa and

P10.
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The re-projection matrix Kts introduced in (2.31a) is given by

Kts =



























1
2 0 1 1

2 − 1
N

1
N

0 1
2

N2−4
2 −1 −N−2

2N −N+2
2N

1
N2−1

1
N2−1

1
N2−1

1
N2−1

1
N2−1

1
N2−1

1
2 − 2

N2−4
1 N2−12

2(N2−4)
1

N+2 − 1
N−2

−N(N+3)
4(N+1) − N(N+3)

4(N+1)(N+2)
N2(N+3)
4(N+1)

N2(N+3)
4(N+1)(N+2)

N2+N+2
4(N+1)(N+2)

N+3
4(N+1)

N(N−3)
4(N−1) − N(N−3)

4(N−1)(N−2)
N2(N−3)
4(N−1) − N2(N−3)

4(N−1)(N−2)
N−3

4(N−1)
N2−N+2

4(N−1)(N−2)



























(A.28)

After some reflection it is easy to understand why does the inverse matrix coincide with

the direct one:

Kst = Kts . (A.29)

It is also easy to construct the u-channel re-projection matrices (2.31b) exploiting the

symmetry of the s-channel projectors under t ↔ u transformation. Thus Kus is obtained

by changing sign of the first two columns of Kts and the inverse matrix Ksu — by changing

sign of the first two rows of Kts.

Hints for deriving (A.28) without spilling much blood [12].

P(t)
a : is 1/N times the s-channel “gluon exchange potential”; see (A.26).

P(t)
10 : look at (A.12) from t-channel perspective,

P(t)
10 =

1

2
(1l(t) − X(t)) − P(t)

a ; 1l(t) ≡ (N2−1) · P1 , X(t) ≡ X .

Representation of the last term P(t)
a we already know. The cross we get from the

representation of the unity, by exchanging t ↔ u:

1l = Pa + P10 + P1 + Ps + P27 + P0,

X = −Pa − P10 + P1 + Ps + P27 + P0.

P(t)
1 : ≡ (N2−1)−1 · 1l.

P(t)
s : using pictorial representation for ifabc and dabc symbols in terms of quark loops,

ifabc [dabc] = 2



 ∓



 , (A.30)

and the Fierz identity (A.23) to get rid of gluons connecting quark triangles, it is

straightforward to derive

1

4

[

+

]

+
1

2N
= B+ + B−, (A.31)
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where B± stand for quark boxes with positive (negative) direction of the fermion

line: B+ = Tr[ta2ta1ta3ta4 ], B− = Tr[ta1ta2ta4ta3 ]. Since the boxes are rotationally

invariant, we can rotate the l.h.s. by 90o and write the same expression in terms of

the s-channel operators:

B+ + B− ≡ B
(t)
+ + B

(t)
− =

N

4
Pa +

N2 − 1

2N
P1 +

N2 − 4

4N
Ps . (A.32)

Equating (A.31)=(A.32), and already knowing P(t)
a , suffices to get hold of P(t)

s .

P(t)
27,0: for the t-channel 27 and 0 projectors we use ”rotated” definitions (A.13) and (A.14).

In these expressions we know all the elements but the sum of rotated crossed boxes

W
(t)
+ + W

(t)
− . Flipping (A.31) around the top (that is, exchanging 1 ↔ 3) we have

1

4

[

−
]

+
1

2N
= W+ + W− . (A.33)

“Rotating” (A.33) by 90o we obtain

W
(t)
+ + W

(t)
− = −N

4
Pa +

N2 − 1

2N
P1 +

N2 − 4

4N
Ps . (A.34)

Finally, it does not hurt to check the t-channel completeness relation:
∑

ρ P
(t)
ρ = 1l(t).

B. Symmetric basis

The soft anomalous dimension matrix Q can be made symmetric by applying the metric

operation which consists of multiplying the columns and dividing the rows by the square

root of the dimension of the representation. That is,

Γsymm = M−1 ΓM , Mαβ =
√

Kα δαβ ,

with Kα given in (3.3). In the symmetrised form the Q matrix reads

Q(s) =



































3
2 0 − 2b

U1D1
− b

2 − b U3

N U1
− b D3

N D1

0 1 0 − b
√

2
U2D2

− bU1D2U3√
2N U2

− b D1U2D3√
2N D2

− 2b
U1D1

0 2 0 0 0

− b
2 − b

√
2

U2D2
0 3

2 0 0

− b U3

N U1
− b U1D2U3√

2N U2

0 0 N−1
N 0

− b D3

N D1
− b D1U2D3√

2N D2

0 0 0 N+1
N



































, (B.1)

where we used shorthand notation

Uk =
√

N + k , Dk =
√

N − k .
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